All you need to do is divide -1/2 onto the other side.
-1/2x<-12
-12/ (-1/2)= 6 (a negative and a negative equals a positive)
Also, since you are dividing a negative, you flip the sign.
x>6
I hope this helps!
~cupcake
12,5,13 are Pythagorean triplets..
so, missing side will be 12 inches
hope it helps
Hyp^2 = Base^2 + perpendicular^2
For this case we have that the original point is given by:
B = (7, 2)
As the point is reflected through the x axis, then we have the following transformation:
(x, y) --------------> (x, -y) -------------> (x ', y')
Applying the transformation to the original ordered pair we have:
(7, 2) --------------> (7, - (2)) -------------> (7, -2)
Answer:
Point B 'is given by:
B '= (7, -2)
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Answer:
x=3
y=0
Step-by-step explanation:
2x-3=3
2x=6
x=3
x+y=3
3+y=3
y=0