Answer:
Yes, because m<UVW is congruent to m<XVY and m<VUW is congruent to m<VXY
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is equal and its corresponding angles are congruent
so
In this problem
we know that

the measure of angle VXY is equal to
-----> by supplementary angles

therefore

Remember that
m<UVW=m<XVY -----> is the same vertex
therefore
Triangles VUW and VXY are similar by AAA Similarity Theorem ( the three angles are congruent)