The total mass, in kilograms, of the nails the carpenter bought is 3.9 kilogram
<h3><u>Solution:</u></h3>
Given that carpenter bought 750 nails
Each nail has a mass of kilogram
To find: total mass, in kilograms of the nails bought
The total mass of the nails bought can be found out by multiplying number of nails bought by mass of each nail
Number of nails bought = 750
Mass of each nail = kilogram
total mass of the nails bought = number of nails bought x mass of each nail
Thus the total mass of nails bought is 3.9 kilogram
Answer:
(a) ¬(p→¬q)
(b) ¬p→q
(c) ¬((p→q)→¬(q→p))
Step-by-step explanation
taking into account the truth table for the conditional connective:
<u>p | q | p→q </u>
T | T | T
T | F | F
F | T | T
F | F | T
(a) and (b) can be seen from truth tables:
for (a) <u>p∧q</u>:
<u>p | q | ¬q | p→¬q | ¬(p→¬q) | p∧q</u>
T | T | F | F | T | T
T | F | T | T | F | F
F | T | F | T | F | F
F | F | T | T | F | F
As they have the same truth table, they are equivalent.
In a similar manner, for (b) p∨q:
<u>p | q | ¬p | ¬p→q | p∨q</u>
T | T | F | T | T
T | F | F | T | T
F | T | T | T | T
F | F | T | F | F
again, the truth tables are the same.
For (c)p↔q, we have to remember that p ↔ q can be written as (p→q)∧(q→p). By replacing p with (p→q) and q with (q→p) in the answer for part (a) we can change the ∧ connector to an equivalent using ¬ and →. Doing this we get ¬((p→q)→¬(q→p))
Answer:
Step-by-step explanation:
we have
------->
we know that
The formula to solve a quadratic equation of the form is equal to
in this problem we have
so
substitute in the formula
Remember that
You have an angle of elevation of 3 degrees and you're 2000 ft from base of 30 story building.
<span>Draw a picture of this. Then tan(3) = ht of bldg/2000 </span>
<span>I get a height of 104.82 ft rounded to 2 dp. </span>
<span>5. Ok. use the Pythagorean Theorem here to find the hypotenuse of the right triangle </span>
<span>hypt = sqrt(50^2 + 9^2) </span>
<span>Now sine of the angle of elevation is 50/hypt. = 0.984 or 0.98 to 2 dp.</span>