It depends on what variable you are tying to solve for first. Say you are trying to solve for x first and then y on the first problem you wrote.
In substitution you solve one of the equations for example with
6x+2y=-10
2x+2y=-10
you solve 2x+2y=-10 for x
2x+2y=-10
-2y = -2y (what you do to one side of the = you do to the other)
2x=-10-2y (to get the variable by its self you divide the # and the variable)
/2=/2 (-10/2=-5 and -2y/2= -y or -1y, they are the same either way)
x=-5-y
now you put that in your original equation that you didn't solve for:
6(-5-y)+2y=-10 solve for that
-30-6y+2y=-10 combine like terms
-30-4y=-10 get the y alone and to do this you first get the -30 away from it
+30=+30
-4y=20 divide the -4 from each side
/-4=/-4 (20/-4=-5)
y=-5
now the equation you previously solved for x can be solved for y.
x=-5-y
x=-5-(-5) a minus parenthesis negative -(- gives you a positive
-5+5=0
x=0
and now we have solved the problem. x=0 and y=-5
Answer: D
<u>Step-by-step explanation:</u>
The first matrix contains the coefficients of the x- and y- values for both equations (top row is the top equation and the bottom row is the bottom equation. The second matrix contains what each equation is equal to.
![\begin{array}{c}2x-y\\x-6y\end{array}\qquad \rightarrow \qquad \left[\begin{array}{cc}2&-1\\1&-6\end{array}\right] \\\\\\\begin{array}{c}-6\\13\end{array}\qquad \rightarrow \qquad \left[\begin{array}{c}-6\\13\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7D2x-y%5C%5Cx-6y%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C1%26-6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cright%5D)
The product will result in the solution for the x- and y-values of the system.
Answer:
b=0
Step-by-step explanation:
4b-1=-4+4b+3
4b-4b=-4+3+1
b=0
The answer would be 18 because if you put 3a+6a+a=180 (the degrees of a triangle) and solve it a becomes 18