<u>Answer:</u> The specific heat of metal is 0.821 J/g°C
<u>Explanation:</u>
When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of metal = 30 g
= mass of water = 100 g
= final temperature = 25°C
= initial temperature of metal = 110°C
= initial temperature of water = 20.0°C
= specific heat of metal = ?
= specific heat of water = 4.186 J/g°C
Putting values in equation 1, we get:
![30\times c_1\times (25-110)=-[100\times 4.186\times (25-20)]](https://tex.z-dn.net/?f=30%5Ctimes%20c_1%5Ctimes%20%2825-110%29%3D-%5B100%5Ctimes%204.186%5Ctimes%20%2825-20%29%5D)

Hence, the specific heat of metal is 0.821 J/g°C
Answer:
Explanation:
<u>1) Find the z-scores:</u>
a) z-score for 22.6 inches length
- z = [ 22.6 - 20 ] / 2.6 = 1.00
b) z-score for 17.4 inches length
- z = [ 17.4 - 20 ] / 2.6 = - 1.00
<u>2) Probability</u>
Then, you have to find the probability that the length of an infant is between - 1.00 and 1.00 standards deviations (σ) from the mean (μ).
That is a well known value of 68%, which is part of the 68-95-99.7 empirical rule.
The most exact result is obtained from tables and is 68.26%:
- 1 - P (z ≥ 1.00) - P (z ≤ - 1.00) = 1 - 0.1587 - 0.1587 = 0.6826 = 68.26%
Answer:-
Thanks for not describing your question well enough
The greenhouse effect increases the temperature of the Earth by trapping
heat in our atmosphere. This keeps the temperature of the Earth higher
than it would be if direct heating by the Sun was the only source of
warming.
When the sunlight reaches the surface of the Earth, some of it is absorbed
which warms the ground and some bounces back to space as heat. Greenhouse gases that are in the atmosphere absorb and then redirect some of this heat back towards the Earth.