All matter is made of tiny particles called atoms, molecules and ions; the tiny particles in solids are tightly packed and can only vibrate. The particles in liquids also vibrate but are able to move around by rolling over each other and sliding around. In gases, the particles move freely with rapid, random motion.
Answer:
Therefore, the rate of change in the amount of salt is 

Explanation:
Given:
Initial volume of water
lit
Flowing rate = 5 
The rate of change in the amount of salt is given by,
( Rate of salt enters tank - rate of sat leaves tank )
Since tank is initially filled with water so we write that,

Let amount of salt in the solution is
,


Therefore, the rate of change in the amount of salt is 

Answer:

Explanation:
The density formula is:

Let's rearrange the formula for
. the volume. Multiply both sides by
, then divide by
.




The volume can be found by dividing the mass by the density. The mass of the object is 30.07 grams and the density is 1.48 grams per milliliter.


Divide. Note, when dividing, the grams, or
will cancel out.


The volume of the object is 20.317567567568 milliliters.
<span>H2CO3 <---> H+ + HCO3-
NaHCO3 <---> Na+ + HCO3-
When acid is added in the buffer, the excess H+ of that acid reacts with HCO3- to form H2CO3, and due to this NaHCO3 dissociates into HCO3- to attain the equilibrium. and hence there is no net effect of H+ due to pH remain almost constant.
when a base is added to the buffer, the OH- ion of base react eith H+ ion present in buffer, then to attain equilibrium of H+ ion, the H2CO3 dissociates to produce H+ ion, but now there is the excess of HCO3- due to which Na+ ion react with them to attain equilibrium of HCO3-. hence there is again no net change in H+ ion due to which pH remain constant.....</span>