1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
3 years ago
14

Clouds inhibit the outflow of terrestrial radiation. This acts to

Physics
1 answer:
andre [41]3 years ago
8 0

Answer:

The answer is to insulate Earth's surface temperature.

Explanation:

Clouds inhibit the outflow of terrestrial radiation. This acts to insulate Earth's surface temperature, keeping it warmer at night and cooler in the day.

You might be interested in
A woman launches a boat from one shore of a straight river and wants to land at the point directly on the opposite shore. If the
I am Lyosha [343]

Answer:

If she stands on the North side of a river flowing to the East at 5 mph,

she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have

x^2 + 5^2 = 10^2 where x is her speed directly across the river

x = (75)^1/2 = 8.66 mph towards the South

sin theta = 5 / 10 = 1/2

She must angle the boat at 30 deg from straight South

4 0
2 years ago
Who is most likely to benefit from use of lithium?
Alexxx [7]
I think that the people who are most likely to benefit from lithium is people with bipolar disorder. Because there have been tests that recently show that they use it for patients with that disease. 
4 0
3 years ago
Identify and explain which ball most likely had the greatest speed.
deff fn [24]
Y, bc the height of the bounce back is higher than x
4 0
3 years ago
A) Determine the x and y-components of the ball's velocity at t = 0.0s, 2.0, 3.0 secs.
malfutka [58]

The kinematic relationships we can find the position, acceleration and launch angle of the body on the planet Exidor.

a) the position are

      time (s)  x (m)   y(m)

        0            0          0

        2.0         3.6        1.2

        3.0         5.4        0.9

b) The aceleration is  g = 0.6 m / s²

c) The launch angle      θ = 33.7º

given parameters

  • the initial velocity of the body vₓ = 1.8m / s and v_y = 1.2 m / s
  • the movement times t = 1.0s, 2.0s and 3.0 s

to find

    a) position

    b) acceleration

    c) launch angle

Projectile launch is an application of kinematics to the movement of the body in two dimensions where there is no acceleration on the x axis and the y axis has the planet's gravity acceleration

b) To calculate the acceleration of the plant acting on the y-axis, we use that the vertical velocity of the body at the highest point is zero.

         v_y = v_{oy} - g t

where v and v({oy}  are the velocities of the body, g the acceleration of the planet's gravity and t the time

          0 = v_{oy} - gt

           g = v_{oy} / t

from the graph we observe that the highest point occurs for t = 2.0 s

           g = 1.2 / 2.0

           g = 0.6 m / s²

 

a) The position is requested for several times

X axis

in this axis there is no acceleration so we can use the uniform motion relationships

          vₓ = x / t

          x = vₓ t

where x is the position, vx is the velocity and t is the time

we calculate for the time

t = 0.0 s

          x₀ = 0

           

t = 2.0 s

          x₂ = 1.8 2

          x₂ = 3.6 m

t = 3.0 s

          x₃ = 1.8 3

          x₃ = 5.4 m

Y axis

In this axis there is the acceleration of the planet, let us use for the position the relation

          y = v_{oy} t - ½ g t²

t = 0.0 s

          y₀ = 0

          y₀ = 0 m

t = 2.0 s

         y₂ = 1.2 2 - ½ 0.6 2²

         y₂ = 1.2 m

t = 3.0 s

        y₃ = 1.2  3 - ½  0.6  3²

        y₃ = 0.9 m

c) the launch angle use the trigonometry relation

        tan θ = \frac{v_y}{v_x}

        θ = tan⁻¹ \frac{v_y}{v_x}

        θ = tan⁻¹ \frac{1.2}{1.8}

        θ = 33.7º

measured counterclockwise from the positive side of the x-axis

With the kinematic relationships we can find the position, acceleration and launch angle of the body on the planet Exidor.

a) the position are

      time (s)  x (m)   y(m)

        0            0          0

        2.0         3.6        1.2

        3.0         5.4        0.9

b) The aceleration is  g = 0.6 m / s²

c) The launch angle      θ = 33.7ºto)

learn more about projectile launch here:

brainly.com/question/10903823

4 0
2 years ago
You have a 1.7 μf and a 2.2 μf capacitor. what values of capacitance could you get by connecting them in parallel?
Rus_ich [418]
You have to add 1.7 and 2.2 together!
1.7+2.2=3.9μF
5 0
3 years ago
Read 2 more answers
Other questions:
  • The fastest pitched baseball was clocked at 46 m/s. assume that the pitcher exerted his force (assumed to be horizontal and cons
    15·1 answer
  • A star has a surface temperature of 30,000 K. At what wavelength does the peak radiation occur? 100 nm
    15·2 answers
  • Wires 1, 2, and 3 each have current moving through them to the right. I1 = 10 A, I2 = 5 A, and I3 = 8 A. Wire 2 is 15 cm long an
    13·1 answer
  • An element is made up of
    12·2 answers
  • What is a discussion?
    14·2 answers
  • How to find the gradient of a velocity time graph
    9·1 answer
  • Jupiter has a mass of 1,898,000,000,000,000,000,000,000,000 kg. How would
    7·1 answer
  • The initial speed of a body is 3.28 m/s. What is its speed after 2.32 s if it accelerates
    14·1 answer
  • 2. A loop of wire of area 0.7 m is moving into a 0.9 T magnetic field. If it takes 5
    14·1 answer
  • Different satellites orbit the earth with a vast range of altitudes, from just a couple hundred km, all the way to tens of thous
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!