Answer:
3A
Explanation:
Rtoal=R1+R2+R3=5+10+15=30
I=V/R 90/30
I=3
Answer
given,
high temperature reservoir (T_c)= 464 K
efficiency of reservoir (ε)= 25 %
temperature to decrease = ?
increase in efficiency = 42 %
now, using equation




T_C = 348 K
now,
if the efficiency is equal to 42$ = 0.42



Since the direction of the force and the direction of the path is perpendicular, the person is not doing any physical work.
Explanation:
The US Supreme Court has affirmed in Miller v. Johnson (1995) that racial gerrymandering is a violation of constitutional rights and upheld decisions against redistricting that is purposely devised based on race. However, the Supreme Court has struggled as to when partisan gerrymandering occurs (Vieth v.
1 horsepower is equal to 746 W, so the power of the engine is

The power is also defined as the energy E per unit of time t:

Where the energy corresponds to the work done by the engine, which is

. Re-arranging the formula, we can calculate the time t needed to do this amount of work: