Answer:
Such molecule must have molecular formula of C15N3H15
Explanation:
Mass of carbon in such molecule

The atomic mass of carbon is 12.01 g/mol, so in 182.28 g of carbon there is 15.18 mols of carbon.
Mass of Nitrogen in such molecule

The atomic mass of nitrogen is 14.01 g/mol, so in 42.53g of nitrogen there is 3.04 mols of nitrogen.
Mass of Hydrogen in such molecule

The atomic mass of Hydrogen is 1.00 g/mol, so in 15.19 g of Hydrogen there is 15.19 mols of Hydrogen.
Such molecule must have molecular formula of C15N3H15
Answer:224
Explanation:
We should answer it with Stoichiometry
We say: 20 g H2× (1 mol/ 2g)× ( 22.4 lit/ 1 mol) = 224
Means: we have 20 grams and every 2g H2, equals to 1 mol of it and every 1 mol of H2, equals to 22.4 lit( because of STP)
hope you got this:)
Answer:
Three chemical elements: hydrogen, oxygen, and helium.
The difference between metals and metalloids is: metalloids have properties in between those of the metals and non-metals and are semiconductors.
The periodic table is organized by the elemts atomic number, it goes from the element with the lowest atomic number (which is hydrogen) to the element with the highest atomic number (oganesson)
Explanation:
Hope this helps :)
Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.