Answer:
C6H12O6 —> 2C2H5OH + 2CO2
Explanation:
The equation for the reaction is given below:
C6H12O6 —> C2H5OH + CO2
We can balance the equation above as follow:
There are 12 atoms of H on the left side and 6 atoms of the right side. It can be balance by putting 2 in front of C2H5OH as shown below:
C6H12O6 —> 2C2H5OH + CO2
There are 6 atoms of C on the left side and 5 atoms on the right side. It can be balance by putting 2 in front of CO2 as shown below:
C6H12O6 —> 2C2H5OH + 2CO2
Now the equation is balanced.
Answer:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Explanation:
Potassium and chlorine gas combine to form potassium chloride which is an ionic compound. The reaction is a type of combination reaction in which chlorine is being added to the metal, potassium.
Potassium reacts violently with the chlorine which is yellowish green in color to produce white solid of potassium chloride.
The balanced reaction is shown below as:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Answer:
Q sln = 75.165 J
Explanation:
a constant pressure calorimeter:
∴ m sln = m Ba(OH)2 + m HCl
∴ molar mass Ba(OH)2 = 171.34 g/mol
∴ mol Ba(OH)2 = (0.06 L)(0.3 mol/L) = 0.018 mol
⇒ mass Ba(OH)2 = (0.018 mol)(171.34 g/mol) = 3.084 g
∴ molar mass HCl = 36.46 g/mol
∴ mol HCl = (0.06 L)(0.60 mol/L) = 0.036 mol
⇒ mass HCl = (0.036 mol)(36.46 g/mol) = 1.313 g
⇒ m sln = 3.084 g + 1.313 g = 4.3966 g
specific heat (C):
∴ C sln = C H2O = 4.18 J/g°C
∴ ΔT = 26.83°C - 22.74°C = 4.09°C
heat absorbed (Q):
⇒ Q sln = (4.3966 g)(4.18 J/g°C)(4.09°C)
⇒ Q sln = 75.165 J