It means that <span>the cell loses most of its water from osmosis when put in a hypertonic.
Hope that helps!</span>
Isotope 1: 89.905 * 51.45 = 4625.61225 / 100 = 46.2561225
Isotope 2: 90.906 * 11.22 = 1019.96532 / 100 = 10.1996532
Isotope 3: 91.905 * 17.15 = 1576.17175 / 100 = 15.7617075
Isotope 4: 93.906 * 17.38 = 1632.08628 / 100 = 16.3208628
Isotope 5: 95.908 * 2.08 = 268.5424 / 100 = 2.685424
46.2561225 + 10.1996532 + 15.7617075 + 16.3208628 + 2.685424 = 91.22377
actual mass Zr = about 91.22
When a sodium atom transfers an electron to a chlorine atom, forming a sodium cation (Na+) and a chloride anion (Cl-), both ions have complete valence shells, and are energetically more stable. The reaction is extremely exothermic, producing a bright yellow light and a great deal of heat energy.
The molecular weight of K2SO4 is 174.26 g/mole. The mass of K2SO4 required to make this solution is calculated in the following way.
550mL * (0.76mole/1000mL) * (174.26g/mole) = 72.84gram
<span>I hope this helps.</span>
Answer:
Avogadro's number is the number of particles in one mole of anything. In this context, it is the number of atoms in one mole of an element. It's easy to find the mass of a single atom using Avogadro's number. Simply divide the relative atomic mass of the element by Avogadro's number to get the answer in grams.