Answer:
The final balanced equation is
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
Explanation:
It is given that sodium hydroxide is added to collect the solid nickel(II) hydroxide product
The empirical equation for this statement is
Ni2+ + NaOH --> Ni (OH)2 + Na+
We will first balance the hydroxide molecule. On the right side there are two OH molecules.
Thus, on the left side we will take 2 sodium hydroxide
Ni2+ + 2NaOH --> Ni (OH)2 + Na+
Now we will balance the sodium ion which are 2 in numbers on the left side and 1 on the right side
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
So, the final balanced equation is
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Https://worldcuprussiai.de/ http://www.frankieballard.com/forum/soccer-brazil-vs-mexico-live-stream-online-free-2nd-round-117876
Answer:
Multiply the number of moles in the product by the molecular weight of the product to determine the theoretical yield.
Explanation:
For example:
If you created 0.5 moles of Aluminium Oxide the molecular weight of Aluminium Oxide is 101.96g/mole, so you would get 50.98g as the theoretical yield.
So multiply,..
101.96x0.5= 50.98
This is the correct way to calculate the theoretical yield
......