Answer:
A. Energy is transferred to different forms
.
Explanation:
Hello!
In this case, we need to consider the law of conservation of mass and energy which states that mass and energy cannot be neither created nor destroyed, just modified; it means we can rule out B. and C. so far.
Moreover, since D. is actually true for combustion reactions because they are used to provide energy in industrial operations, this is not the concern here because a combustion reaction is not considered.
Therefore the correct option is A. Energy is transferred to different forms as the energy provided by Rose is transferred to the pendulum system
.
Best regards!
Answer:
I got the answers but it won't let me post it correctly on here....
Explanation:
9.) 10-2.76 =0.0174 [H30+]= 1.74*10-3 M
10.)10-3.65=0.00224 [H3O+] =2.24*10-2 M
11.)10-3.65=0.00224 [OH-]= 2.224*10-4M
12.)10-6.87=0.00000135 [OH-]= 1.35*10-7M
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Answer:
The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
As molecules heat they begin to move faster. The heat from the metal plate will make the molecules at room temperature move faster. And the room temperature makes the hot place cool, making the hot plate molecules slow down.
To visualize this, you can use this link
https://phet.colorado.edu/en/simulations/gas-properties
click the play button to activate the activity