Answer:
If it receives energy faster than it can radiate/convect/conduct it away, its temperature will increase. It does not matter.
Explanation:
Answer:
The electric force is conservative.
Since
ΔK = −ΔU,
Kf − Ki =Ui −Uf.
We have,
Kf = 0
Ui = 0.
Thus Ki =Uf.
<u>so ,at 10 fm Uf = (2×10)−12 J.</u>
Moles XeF6 = 10.0g/ 245.28 g/ mol=0.0408
The ratio between F2 and XeF6 is 3:1
Moles F2 required = 3 x 0.0408=0.122
Mass F2 = 0.122 mol x 37.9968 g/ mol=4.64g
Answer:
32.1 g
Explanation:
Step 1: Write the balanced combustion reaction
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 97.4 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
97.4 g × 1 mol/44.01 g = 2.21 mol
Step 3: Calculate the moles of butane that produced 2.21 moles of carbon dioxide
The molar ratio of C₄H₁₀ to CO₂ is 1:4. The moles of C₄H₁₀ required are 1/4 × 2.21 mol = 0.553 mol
Step 4: Calculate the mass corresponding to 0.553 moles of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
0.553 mol × 58.12 g/mol = 32.1 g