Explanation:
The number of protons in an atom is the atomic number.
Mass number is the number of protons plus neutrons in an atom.
Mass number = number of protons + number of neutrons
Atomic number = number of protons
Atomic number gives the symbol of the element
Number Number Atomic Mass Symbol
Protons neutrons Number Number
A 7 B 15 C
D E 26 56 F
A, number of protons = B
Mass number = protons + neutrons
15 = protons + 7
Protons = 15 - 7 = 8
Atomic number 8 is for oxygen = C
Atomic number = number of protons = D = 26
Number of neutrons ;
E = Neutrons = mass number - protons = 56 - 26 = 30
Atomic number 26 is for Iron = F
Answer:
Basically, paramagnetic and diamagnetic refer to the way a chemical species interacts with a magnetic field. More specifically, it refers to whether or not a chemical species has any unpaired electrons or not.
A diamagnetic species has no unpaired electrons, while a paramagnetic species has one or more unpaired electrons.
Now, I won't go into too much detail about crystal field theory in general, since I assume that you're familiar with it.
So, you're dealing with the hexafluorocobaltate(III) ion, [CoF6]3â’, and the hexacyanocobaltate(III) ion, [Co(CN)6]3â’.
You know that [CoF6]3â’ is paramagnetic and that [Co(CN)6]3â’ is diamagnetic, which means that you're going to have to determine why the former ion has unpaired electrons and the latter does not.
Both complex ions contain the cobalt(III) cation, Co3+, which has the following electron configuration
Co3+:1s22s22p63s23p63d6
For an isolated cobalt(III) cation, all these five 3d-orbitals are degenerate. The thing to remember now is that the position of the ligand on the spectrochemical series will determine how these d-orbtals will split.
More specifically, you can say that
a strong field ligand will produce a more significant splitting energy, Δ a weak field ligand will produce a less significant splitting energy, Δ
Now, the spectrochemical series looks like this
http://chemedu.pu.edu.tw/genchem/delement/9.htmhttp://chemedu.pu.edu.tw/genchem/delement/9.htm
Notice that the cyanide ion, CNâ’, is higher on the spectrochemical series than the fluoride ion, Fâ’. This means that the cyanide ion ligands will cause a more significant energy gap between the eg and t2g orbitals when compared with the fluoride ion ligands.
http://wps.prenhall.com/wps/media/objects/3313/3393071/blb2405.htmlhttp://wps.prenhall.com/wps/media...
In the case of the hexafluorocobaltate(III) ion, the splitting energy is smaller than the electron pairing energy, and so it is energetically favorable to promote two electrons from the t2g orbitals to the eg orbitals → a high spin complex will be formed.
This will ensure that the hexafluorocobaltate(III) ion will have unpaired electrons, and thus be paramagnetic.
On the other hand, in the case of the hexacyanocobaltate(III) ion, the splitting energy is higher than the electron pairing energy, and so it is energetically favorable to pair up those four electrons in the t2g orbitals → a low spin complex is formed.
Since it has no unpaired electrons, the hexacyanocobaltate(III) ion will be diamagnetic.
Answer: Option D) covalent bonds between water molecules
In water, hydrogen bonds are best described as covalent bonds between water molecules
Explanation:
The hydrogen bonds between water molecules are covalent bonds because they are formed when oxygen attract the lone electron in hydrogen, thus resulting in the formation of a partially negative charge on the oxygen atom and a partially positive charge on two hydrogen atoms
Thus, the sharing of electrons between oxygen and hydrogen atoms is responsible for the covalent bonds between water molecules