1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
8

How do I solve 6=1/2z

Mathematics
1 answer:
ahrayia [7]3 years ago
3 0

Answer:

z=12

Step-by-step explanation:

divide by 1/2 to get the variable z by itself

You might be interested in
Which of the following is the difference of two squares?
Sedaia [141]

The difference of two squares expression is (d) 25a^2-36b^6

<h3>How to determine the difference of two squares?</h3>

The difference of two squares is represented as:

x^2 - y^2

Where x and y are perfect square expressions.

From the list of options, we have:

25a^2-36b^6

The terms of the above expression are perfect squares

i.e.

25a^2 = (5a)^2

36b^6 = (6b^3)^2

Hence, the difference of two squares expression is (d) 25a^2-36b^6

Read more about expressions at:

brainly.com/question/3189867

#SPJ1

4 0
1 year ago
Select the proper order from least to greatest for 2⁄3 , 7⁄6 , 1⁄8 , 9⁄10 . A. 2⁄3 , 9⁄10 , 7⁄6 , 1⁄8 . B. 7⁄6 , 9⁄10 , 2⁄3 , 1⁄
Nataly_w [17]
The correct answer is B.
\frac{7}{6}
is greater then one, 9/10 is only slightly less than one, 2/3 is a little more than half, and 1/8 is the smallest number.
5 0
2 years ago
Read 2 more answers
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
Simplify the expression cos x cot x+ sin x please select the best answer from the choices provided a.0, b.csc x, c. Tan x, d sec
expeople1 [14]

Answer:

cot x = \frac{cos x}{sin x}

cos x \frac{cos x}{sin x} + sin x

\frac{cos^2 x}{sin x} +sin x

sin^2 x + cos^2 x =1

Solving for cos^2 x we got cos^2 x =1 -sin^2 x and replacing this we got:

\frac{1-sin^2 x}{sin x} +sin x

\frac{1}{sin x} -\frac{sin^2 x}{sin x} +sin x

csc x -sin x + sin x = csc x

And then the best option for this case would be:

b.csc x

Step-by-step explanation:

For this case we have the following expression given:

cos x cot x + sin x

We know from math properties that the definition for cot is cot x = \frac{cos x}{sin x}

If we use this definition we got:

cos x \frac{cos x}{sin x} + sin x

\frac{cos^2 x}{sin x} +sin x

Now we can use the following identity:

sin^2 x + cos^2 x =1

Solving for cos^2 x we got cos^2 x =1 -sin^2 x and replacing this we got:

\frac{1-sin^2 x}{sin x} +sin x

\frac{1}{sin x} -\frac{sin^2 x}{sin x} +sin x

csc x -sin x + sin x = csc x

And then the best option for this case would be:

b.csc x

4 0
3 years ago
6. The total cost of materials to build the foam
Sophie [7]

Answer:

Cost of Material per square foot = $1.7

Step-by-step explanation:

Given:

Length = 24

Width = 12

Height = 6.5

Find:

Cost of Material per square foot

Computation:

TSA of pit = 2[bh + hl] + lb

TSA of pit = 2[(12)(6.5) + (24)(6.5)] + (24)(12)

TSA of pit = 2[78+156] + 288

TSA of pit = 756 square foot

Cost of Material per square foot = 1,285.20 / 756

Cost of Material per square foot = $1.7

4 0
3 years ago
Other questions:
  • What is 7.8×1057.8×105 hours in days?
    5·1 answer
  • What's the inequality​
    8·2 answers
  • 20 points! <br> What are the graphing coordinates for:<br> g(1)=-3(1/2)
    11·1 answer
  • -27 = 3 (x - 2) How do I solve this? Step by step please
    5·1 answer
  • Can someone help with either question plz
    15·1 answer
  • Expand and simplify 4 (3a-4)
    11·2 answers
  • Extra Points! Emerson purchased a game that was on sale for 18% off. The sales tax in his county is 8%. Let y represent the orig
    8·2 answers
  • A cylinder with radius 3 meters and height 7 meters has its radius tripled. How many times greater is the volume of the larger c
    8·1 answer
  • F(x) = 6x-6, g(x) = -x^2 find (f*g)(x)
    13·1 answer
  • A runner finishes a race in 2:27:15 Explain the meaning of the Digits?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!