The mass of any substance will remain the same regardless of its state of matter. Using water as an example, its volume increases when it is boiled to a gas or when it is frozen from a liquid state to the solid state ice. The volume and temperature will change as it moves through the states of matter, however the amount of individual molecules of oxygen and hydrogen that form water will remain the same and this constitute mass.
Answer:
Fair Labor Standards Act
Explanation:
It is correct. I just took the test on Clever
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated