Answer:
-2,044.0 kJ/mol
Explanation:
<em> I just did the test on edg</em>
<em />
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
Explanation:
Steaming up or fogging happens when steam condenses on the mirror. Steam emerging from hot water can condense on a colder surface. That’s the reason you can see the result on a mirror instantaneously. Obviously, for a bathroom mirror to steam up, the steam that originates at the shower spray (or the bathtub) has to travel through the cooler air to reach the mirror. Since air tends to heat up easily, the mirror can steam up fast.
Answer: Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.
According to the neutralization law,
where,
= molarity of solution = 0.338 M
= volume of solution = 25.7 ml
= molarity of solution = 0.155 M
= volume of solution = ?
= valency of = 1
= valency of = 1
Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Answer:
Natural resources are not evenly distributed all over the world. Some places are more endowed that others — for instance, some regions have lots of water (and access to ocean and seas). Others have lots of minerals and forestlands. Others have metallic rocks, wildlife, fossil fuels and so on.
Explanation: