Answer:
1800/300 = 6ropes
Explanation:
The engine weighs 1800N and the person exerts a force of 300N, so for him to lift the engine and exerting a force of 300N all through we divide the weight of the engine by the force exerted to know how many ropes are used. Which makes it 6 thereby each rope uses 300N to lift the engine.
Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.
Answer:
I = 0.636*Imax
Explanation:
(a) To find the fraction of the maximum intensity at a distance y from the central maximum you use the following formula:
(1)
I: intensity of light
Imax: maximum intensity of light
d: separation between slits = 0.200mm = 0.200 *10^-3 m
L: distance from the screen = 613cm = 0.613 m
y: distance to the central peak of the interference pattern
λ: wavelength of light = 656.3 nm = 656.3 *10^-9 m
You replace the values of all variables in the equation (1):

Hence, the fraction of the maximum intensity is I = 0.636*Imax
Answer:
momentum in a body can be calculated using
<em><u>Mome</u></em><em><u>ntum</u></em><em><u>=</u></em><em><u>Mass×</u></em><em><u>V</u></em><em><u>e</u></em><em><u>l</u></em><em><u>o</u></em><em><u>s</u></em><em><u>i</u></em><em><u>t</u></em><em><u>y</u></em><em><u> </u></em>
<em><u>i</u></em><em><u>e(</u></em><em><u>p</u></em><em><u>=</u></em><em><u>m×</u></em><em><u>v</u></em><em><u>)</u></em>
20 joule is your answer
Answer:
here
mass m =100kg
distance d=50m
acceleration due to gravity a =10m/s²
work =force×displacement
= ma/d=100×10/50=20joule