Answer:
3kg
Explanation:
impulse = MV
then
m1v1=m2v2
when the values are subtitude
then
m2=1.2*25/10
m2=<em>3</em><em>0</em><em>k</em><em>g</em><em>/</em><em>/</em>
The correct answer is c) 28 m/s.
Let's find the step-by-step solution. The motion of the monkey is an uniformly accelerated motion, with acceleration equal to

. The initial velocity of the monkey is zero, while the distance covered is S=40 m. Therefore, we can use the following relationship to find vf, the final velocity of the monkey:

from which
Answer:
Explanation:
Force of friction acting on the body = μ mg cosθ
= .4 x 70 x 9.8 x cos30
= 237.63 N
component of weight = mgsinθ
= 70 x 9.8 x sin30
= 343 N
Net upward force = 600 - mgsinθ - μ mg cosθ
= 600 - 343 - 237.63
= 105.37 N
acceleration in upward direction = 105.37 / 70
= 1.5 m /s²
s = ut + 1/2 a t²
= 0 + .5 x 1.5 x 3²
= 6.75 m .
Using land according to its capability. protect the soil surface with some form of cover. control runoff before it develops into an erosive force
Answer:
the heat absorbed by the block of copper is 74368.476J
Explanation:
Hello!
To solve this problem use the first law of thermodynamics that states that the heat applied to a system is the difference between the initial and final energy considering that the mass and the specific heat do not change so we can infer the following equation
Q=mCp(T2-T1)
Where
Q=heat
m=mass=2.3kg
Cp=0.092 kcal/(kg C)=384.93J/kgK
T2=Final temperatura= 90C
T1= initial temperature=6 C
solving

the heat absorbed by the block of copper is 74368.476J