Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = 
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D
You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.
Higher concentration of reactants equals faster rate of reaction. Reactions occur when particles collide effectively, and by increasing the concentration of reactants, you increase the number of effective collisions, thereby making the reaction occur faster.
Based on Le Chatelier's principle, if the equilibrium of a system is disturbed by changing the temperature, pressure or concentration, then it will shift in a direction to undo the effect of the induced change.
The given equilibrium is:
A + B ↔ AB
Removal of the reactant A implies that the concentration of A has decreased, therefore the equilibrium will shift in a direction to produce more of A. Thus, it will shift to the left and the rate of the reverse or backward reaction will increase.
Answer:
The answer would either be Carbon or Silicon.
Explanation: