Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
V1 = 30 mL
P1 = 760 torr
P2 = 1520 torr
V2 = ?
applying Boyle's Law
P1*V1 = P2*V2
760 torr * 30 mL = 1520 torr * V2
V2 = 760 torr * 30 mL / 1520 torr
( C ) is correct
Cryo-EM is used to preserve and characterize cycled positive electrodes. Under regular cycling conditions, there isn't an intimate coating layer like CEI.A small electrical short can cause a stable conformal CEI to form in place. The conformal CEI's chemistry is revealed by EELS and cryo-(S)TEM.
It has been assumed that the intimate coating layer generated on the positive electrode, known as cathode electrolyte interphase (CEI), is crucial. However, there are still numerous questions about CEI. This results from the absence of useful instruments to evaluate the chemical and structural characteristics of these delicate interphases at the nanoscale. Here, using cryogenic electron microscopy, we establish a methodology to maintain the natural condition and directly see the interface on the positive electrode.
Learn more about Cathode electrolyte interphase here:
brainly.com/question/861659
#SPJ4
I think the correct answer from the choices listed above is option B. The reactants calcium sulfide and sodium sulfate will react and form a precipitate which is calcium sulfate since it is only slightly soluble in aqueous solution. Hope this answers the question.
Answer:
Mw = 179.845 g/mol
Explanation:
∴ w = 26.2 g
∴ 1 mol = 6.02 E23 molecules.......Avogadro's number
⇒N° moles = 8.77 E22 molecules * ( mol / 6.02 E23 molecules ) = 0.146 mol
⇒ Mw = 26.2 g / 0.146 mol = 179.845 g/mol