Answer : The heat energy absorbed will be, 
Solution :
The process involved in this problem are :

The expression used will be:
![\Delta H=m\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3Dm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
m = mass of ice = 1100 g
= specific heat of liquid water = 
= enthalpy change for fusion = 
Molar mass of water = 18 g/mole
Now put all the given values in the above expression, we get:
![\Delta H=1100g\times 333.89J/g+[1100g\times 4.18J/g^oC\times (32.0-0)^oC]](https://tex.z-dn.net/?f=%5CDelta%20H%3D1100g%5Ctimes%20333.89J%2Fg%2B%5B1100g%5Ctimes%204.18J%2Fg%5EoC%5Ctimes%20%2832.0-0%29%5EoC%5D)

Conversion used : (1 cal = 4.184 J)
Therefore, the heat energy absorbed will be, 
Answer:
It's too far away
Explanation:
According to classical mechanics, gravitational pull is inversely proportional to the distance squared; as the distance increases, the gravitational pull decreases at a faster and faster rate. Since Alpha Centauri A is a few lightyears (Tens of trillions of kilometers away), without even needing to calculate the force of gravity, it is very miniscule.
Flammmability is a chemical change because it changes the composition of the object. the product is very different from the rectant.
ok im not full sure man but i would say multiple voltaic cells that have spontaneous half reactions
im sorry hope it helps
Answer:

Explanation:
Molarity is a measure of concentration in moles per liter.

The solution has a molarity of 1.2 M or 1.2 moles per liter. There are 4.0 moles of NaCl, the solute. We don't know the liters of solution, so we can use x.
- molarity= 1.2 mol/L
- moles of solute= 4.0 mol
- liters of solution =x
Substitute the values into the formula.

Since we are solving for x, we must isolate the variable. Begin by cross multiply (multiply the 1st numerator and 2nd denominator, then the 1st denominator and 2nd numerator.



x is being multiplied by 1.2 moles per liter. The inverse of multiplication is division, so divide both sides by 1.2 mol/L


The units of moles (mol) will cancel.


The original measurements both have 2 significant figures, so our answer must have the same. For the number we found, this is the tenths place.
The 3 in the hundredth place tells us to leave the 3 in the tenths place.

Approximately <u>3.3 liters of solution</u> are needed to make a 1.2 M solution with 4.0 moles of sodium chloride.