Given:
15. 
17. 
19. 
To find:
The values of the given logarithms by using the properties of logarithms.
Solution:
15. We have,

Using property of logarithms, we get
![[\because \log_aa=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%3D1%5D)
Therefore, the value of
is 1.
17. We have,

Using properties of logarithms, we get
![[\because \log_a\dfrac{m}{n}=-\log_a\dfrac{n}{m}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_a%5Cdfrac%7Bm%7D%7Bn%7D%3D-%5Clog_a%5Cdfrac%7Bn%7D%7Bm%7D%5D)
![[\because \log_aa=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%3D1%5D)
Therefore, the value of
is -1.
19. We have,

Using property of logarithms, we get
![[\because a^{\log_ax}=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E%7B%5Clog_ax%7D%3Dx%5D)
Therefore, the value of
is 100.
Here it is...........................
Answer:
left limit = 2 ≠ 1/2 = right limit
Step-by-step explanation:
A function is discontinuous if the limit of the function value approaching the point from the left is different than the limit approaching from the right.
Here, the left limit is 2 and the right limit is 1/2. The limits are different, which is why the function is discontinuous at x=-1.
Check the picture below.
so, the hyperbola looks like so, clearly a = 6 from the traverse axis, and the "c" distance from the center to a focus has to be from -3±c, as aforementioned above, the tell-tale is that part, therefore, we can see that c = 2√(10).
because the hyperbola opens vertically, the fraction with the positive sign will be the one with the "y" in it, like you see it in the picture, so without further adieu,
