<span>a. We can find the velocity when the camera hits the ground.
v^2 = (v0)^2 + 2ay = 0 + 2ay
v = sqrt{ 2ay }
v = sqrt{ (2)(3.7 m/s^2)(239 m) }
v = 42 m/s
The camera hits the ground with a velocity of 42 m/s
b. We can find the time it takes for the camera to hit the ground.
y = (1/2) a t^2
t^2 = 2y / a
t = sqrt{ 2y / a }
t = sqrt{ (2)(239 m) / 3.7 m/s^2 }
t = 11.4 seconds
It takes 11.4 seconds for the camera to hit the ground.</span>
Archimedes found a piece of gold and a piece of silver with exactly the same mass. He dropped the gold into a bowl filled to the brim with water and measured the volume of water that spilled out. Then he did the same thing with the piece of solver. Although both metals had the same mass, the silver gad a larger volume; therefore, it displaced more water than the gold did. That's because the silver was less dense than gold. Afterwards he applied the same method to the crown for the king he served who had got a new crown from a jeweler who gave it to him. Archimedes found a piece of pure gold that had the same mass as the crown. He placed the pure gold chuck and the crown in water, one at a time. The crown displaced more water the piece of gold. Therefore, its density was less than pure gold.
Statements A, C, D, and E are all true.
Statements B and F are false.
Answer:
The magnification is 
Explanation:
From the question we are told that
The power of the lens is 
Generally 
The object distance is
the negative sign is because the distance is measured in the opposite direction of incident light (i.e away )
Generally the focal length is mathematically represented as
=>
=> 
converting to cm
=> 
Generally from lens equation we have that

=> 
=> 
Generally the magnification is mathematically represented as

=> 
=> 
The work done by a gas during an isothermal process is given by:

(1)
where
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas

is the ratio between the final volume and the initial volume of the gas
We need to calculate this ratio, and we can do it by using the gas pressure. In fact, for an isothermal process, Boyle's law states that the product between pressure and volume of the gas is constant:

which can be rewritten as

which is equivalent to

The problem says that the pressure of the gas is tripled, therefore the ratio between final and initial volume is:

Now we can use eq.(1) to calculate the work done by the gas. The absolute temperature is

The number of moles is n=2, therefore the work done is

And the work is negative, because it is done by the environment on the gas (the gas is compressed)