1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
14

How to find the area of a circle with the circumference?

Mathematics
1 answer:
Anika [276]3 years ago
5 0
You can abuse the fact that PI is Circumference/diameter.

This means that, to find the diameter, you would have to do the following:

PI = circumference/diameter
(You can choose the number of decimals of PI, based on how accurate you want the diameter. 3.14 tends to work for most cases.)

After youve done this, you would be able to find the diameter like this:
PI*diameter = circumference
diameter = Circumference/pi

Then, you can use the diameter/2 to find the radius, like this:
radius = diameter/2

After this, you can simply use the formula for the surface area of a circle, like this:

SA = PI*Radius^2

I might be able to add an example, if really needed.
You might be interested in
X^{2} - 8x + 7 = 0<br> Solve by completing the square. Also can you include steps?
iren [92.7K]

Answer:

{1, 7}

Step-by-step explanation:

Start with x^2 - 8x + 7 = 0.

We want to modify the first two terms to resemble x^2 - ax + b - b, where a is the coefficient (here -8) of the x term and b is the square of half of a.

Here, a = -8.  Half of that is -4.  The square of -4 is 16, and this is the value of b.

Write out x^2 - 8x     as    x^2 - 8x + 16 - 16.  This is the perfect square of -4, added to x^2 - 8x and then subtracted from the result

Then the original equation, x^2 - 8x + 7 = 0, can be rewritten as:

x^2 - 8x + 16 - 16 + 7 = 0, and then as (x - 4)^2 - 9, or (x - 4)^2 = 9.

We want to solve this result for x.  To do this, take the square root of both sides:

x - 4 = ±√9, or x - 4 = ±3.

Adding 4 to both sides, we get:

x = 4 ± 3.  Thus, the solutions are x = 4 + 3 = 7 and x = 4 - 3 = 1.

6 0
3 years ago
Read 2 more answers
2d=a-b/b-c - solve for a
Readme [11.4K]
2d=\frac{a-b}{b-c}\\\\\frac{a-b}{b-c}=2d\ \ \ \ \ |multiply\ both\ sides\ by\ (b-c)\\\\a-b=2d(b-c)\ \ \ \ |add\ "b"\ to\ both\ sides\\\\\boxed{a=2bd-2cd+b}
7 0
3 years ago
Unit rate for $56 and 25 gal
Anna35 [415]
You would have to divide $56 divided by 25 gallons which would equal $2.24 that the answer I hope it helped
8 0
3 years ago
Al factorizar el trinomio cuadrado perfecto, obtenemos el siguiente resultado: (que no se como resolver) xd algun pro que sepa r
PolarNik [594]

Answer:

\displaystyle \frac{100}{81}m^8p^{12}q^{16}z^2-\frac{20}{63}m^5p^7q^8z^5+ \frac{1}{49}m^2p^2z^8=\left(\frac{10}{9}m^4p^{6}q^{8}z-\frac{1}{7}mpz^4\right)^2

Step-by-step explanation:

<u>Trinomio Cuadrado Perfecto</u>

El producto notable llamado cuadrado de un binomio se expresa como:

(a-b)^2=a^2-2ab+b^2

Si se tiene un trinomio, es posible convertirlo en un cuadrado perfecto si cumple con las condiciones impuestas en la fórmula:

* El primer término es un cuadrado perfecto

* El último término es un cuadrado perfecto

* El segundo término es el doble del proudcto de los dos términos del binomio.

Tenemos la expresión:

\displaystyle \frac{100}{81}m^8p^{12}q^{16}z^2-\frac{20}{63}m^5p^7q^8z^5+ \frac{1}{49}m^2p^2z^8

Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:

\displaystyle a=\sqrt{\frac{100}{81}m^8p^{12}q^{16}z^2}

\displaystyle a=\frac{10}{9}m^4p^{6}q^{8}z

Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:

\displaystyle b=\sqrt{\frac{1}{49}m^2p^2z^8

\displaystyle b=\frac{1}{7}mpz^4

Nos cercioramos de que el término central es 2ab:

\displaystyle 2ab=2\frac{10}{9}m^4p^{6}q^{8}z\frac{1}{7}mpz^4

Operando:

\displaystyle 2ab=\frac{20}{63}m^5p^7q^8z^5

Una vez verificado, ahora podemos decir que:

\displaystyle \frac{100}{81}m^8p^{12}q^{16}z^2-\frac{20}{63}m^5p^7q^8z^5+ \frac{1}{49}m^2p^2z^8=\left(\frac{10}{9}m^4p^{6}q^{8}z-\frac{1}{7}mpz^4\right)^2

5 0
2 years ago
What is the value of x?
adelina 88 [10]

This is an equilateral triangle, which is a triangle that has 3 congruent/equal sides and 3 congruent angles.


To find "x", you can set the sides equal to each other because they are suppose to be the same length (you can just do two sides because all of the sides are the same)

[Side AB = Side BC]

4x - 10 = 3x + 2     Subtract 3x on both sides

x - 10 = 2         Add 10 on both sides

x = 12


[proof]

Side AB:

4x - 10    Plug in 12 for x

4(12) - 10 = 48 - 10 = 38


Side BC:

3x + 2     Plug in 12 for x

3(12) + 2 = 36 + 2 = 38


Side AC:

5x - 22      Plug in 12 for x

5(12) - 22 = 60 - 22 = 38




This is also an equilateral triangle (the tick marks show that the sides are the same)

A triangle is 180°. So the three angles add up to 180°.

Since this is an equilateral triangle, all the angles should be the same.

Each angle is 60°

[60° + 60° + 60° = 180°   or you could have divided 180 by 3 = 60]


Now that you know each angle is 60°, you can do:

(2x - 4)° = 60°

2x - 4 = 60    Add 4 on both sides

2x = 64    Divide 2 on both sides

x = 32


4 0
2 years ago
Other questions:
  • Lupita rides a taxi that charges a flat rate of $6.75 plus $3.20 per mile. If the taxi charges Lupita $40.03 in total for her tr
    5·2 answers
  • John takes one step every second, and each step is 33 inches long. How many miles per hour is John walking, given that 5280 feet
    15·1 answer
  • What is the area, in square inches, of the figure shown here?
    6·2 answers
  • How do you solve this? Show work and answer
    12·2 answers
  • If Segment PQ = 10 and Segment PR = 25, what is the length of Segment QR?
    8·1 answer
  • 4(x+6)-3x=26 what is the x value
    9·2 answers
  • Identify the lateral area and surface area of a regular triangular pyramid with base edge length 10 ft and slant
    10·1 answer
  • Simplify this please brainly if correct ! Thanks
    10·2 answers
  • Explain the answer thanks
    7·2 answers
  • Find the 35th term in the arithmetic sequence: -10, -14, -18, -22,...
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!