Answer:
See Explanation
Explanation:
The question is incomplete, as there are no diagrams or options to provide more information to the question.
The general explanation is as follows:
For the object not to move
(1): The forces acting on the object must opposite each other. i.e. if force A acts at the right (or positive direction), force B will act at the left (or negative direction).
(2) The two forces must be equal.
So, for instance:
If the pair of forces are 5N and 5N in opposite directions, the object wil not move.
However, if one of the forces is greater, the object will move towards the direction of the greater force.
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
Answer:
C. The decrease in speed as the wave approaches shore.
Explanation:
The waves break when approaching the shore because the depth decreases. Thus, the wave travels more slowly and increases its height. There comes a time when the part of the wave on the surface travels faster than the one that travels under water, the ridge destabilizes and falls against the ground.
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.