Answer:
Explanation:
The movement of a body can be analyzed using New's first law. In an inertial frame (without acceleration) every body is kept at rest or moving at constant speed until there is an external force that changes this state
Let's analyze these cases in the framework of this first law
a) If the vehicle is going at constant speed the two bodies (the egg and the hands) do not change movement so he had returned to the hands
b) If the vehicle accelerates the passenger goes faster, but the egg that is not subject to anything does not change the movement, so it falls behind the passenger
c) If the vehicle slows down, the passenger reduces its speed and the distance traveled in time, but the egg that is not attached follows its movement and falls in front of the passenger.
Answer: 4100 Mpc
Explanation:
Since H o = 70 km/s/Mpc
Redshift z = 5.82
Recessional velocity vr = 287,000 km/s
Then, the distance to the galaxy in light years will be:
= Recessional velocity / H o
= 287000 / 70
= 4100 Mpc
Answer:
Force exerted, F = 1.5 N
Explanation:
It is given that, a boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s.
i.e. u = 0
v = 30 m/s
Time taken, t = 0.06 s
Mass of the paper, m = 0.003 kg
We need to find the force the boxer exert on it. The force can be calculated using second law of motion as :



F = 1.5 N
So, the force the boxer exert on the paper is 1.5 N. Hence, this is the required solution.
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light:
The answer is: none of the above.
Explanation:
When light reflects from a surface, the frequency, wavelength, and speed do not change. They remain the same.