Answer:
<h3>
The coefficient of kinetic friction between the puck and the ice is
0.12</h3>
Explanation:
Given :
Initial speed 
Displacement
m
From the kinematics equation,

Where
final velocity, in our example it is zero (
),
acceleration.


From the formula of friction,

Minus sign represent friction is oppose the motion
Where
( normal reaction force )
( ∵
)
So coefficient of friction,


Therefore, the coefficient of kinetic friction between the puck and the ice is
0.12 .
Answer:
For the bird moving in a straight line, the kinetic energy is one-half the product of the mass and the square of the speed: Ek=12mu2.
Given the speed of the sound in the problem which is 1 mile per 5 seconds.
The speed is calculated by:
Speed = distance/time = (1mi/5s) (1610 m/1mi) = 300 m/s
Note that only 1 significant figure is given which is 5 second and so only 1 significant figure is justified in the result. The speed of sound is 343 m/s. therefore the rule of thumb is fairly close.
Answer:

Explanation:
The kinetic energy of a rigid body that travels at a speed v is given by the expression:

The equivalence between mass and energy established by the theory of relativity is given by:

This formula states that the equivalent energy
can be calculated as the mass
multiplied by the speed of light
squared.
Where
is approximately 
Hence:


Therefore, the ratio of the person's relativistic kinetic energy to the person's classical kinetic energy is:
