Answer:
Static Friction - acts on objects when they are resting on a surface
Sliding Friction - friction that acts on objects when they are sliding over a surface
Rolling Friction - friction that acts on objects when they are rolling over a surface
Fluid Friction - friction that acts on objects that are moving through a fluid
Explanation:
Examples of static include papers on a tabletop, towel hanging on a rack, bookmark in a book
, car parked on a hill.
Example of sliding include sledding, pushing an object across a surface, rubbing one's hands together, a car sliding on ice.
Examples of rolling include truck tires, ball bearings, bike wheels, and car tires.
Examples of fluid include water pushing against a swimmer's body as they move through it , the movement of your coffee as you stir it with a spoon, sucking water through a straw, submarine moving through water.
<span>Mass represents the density of an object multiplied with the volume it occupies. As a result, an object's density is found by dividing its mass by its volume. So the answer is a.</span>
Use the equation for the acceleration
A = final velocity - initial velocity divided by time final - time initial
A= 54 - 32 / 8 - 0
A= 22 / 8
A= 2.75 m/s^2
Hope this helps!
The answer would be 46.482 because you multiply 18.3 by 2.54 because for every inch you get 2.54 centimeters
Answer:
He could jump 2.6 meters high.
Explanation:
Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.
Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.