Gravitational force between two masses is given by formula

here we know that




now from the above equation we will have


so above is the gravitational force between car and the person
Answer:
1. False
2. True
3. True
Explanation:
1- False —> The relation between electric potential and electric field is given such that

Therefore, for a uniform E field, electric potential is linearly proportional to the distance.
2- True —> The electric field lines always cross the equipotential lines perpendicularly.
3- True —> In order to be a potential difference, one source of electric field is enough. The electric potential will decrease radially according to the following formula:

There is no test charge in the formula, only the source charge. Even when there is no test charge, the potential difference between points in space can exist.
To develop this problem it will be necessary to apply the concepts related to the frequency of a spring mass system, for which it is necessary that its mathematical function is described as

Here,
k = Spring constant
m = Mass
Our values are given as,


Rearranging to find the spring constant we have that,




Therefore the spring constant is 1.38N/m
Answer:
A)
B)
Explanation:
Given that
Force = F
Increase in Kinetic energy = 

we know that
Work done by all the forces =change in the kinetic energy
a)
Lets distance = d
We know work done by force F
W= F .d
F.d=ΔKE


b)
If the force become twice
F' = 2 F
F'.d=ΔKE'
2 F .d = ΔKE' ( F.d =Δ KE)
2ΔKE = ΔKE'

Therefore the final kinetic energy will become the twice if the force become twice.
Well momentum is = to Mass*Velocity so let's use an example to figure this out
If I weighed 50kg and I was jogging at 3m/s then I broke into a run at 6m/s how will me momentum be affected?
3m/s*50kg=150
6m/s*50kg=300
So as you can see by doubling the velocity you also double the momentum