The speed of sound is greater in ice (4000 m/s), then in water (1500 m/s), then in air (340 m/s). The explanation for this is the differente state of the matter in the three cases.
In fact, sound waves travel faster in solids (like ice), then in liquids (like water), then in gases (like air). This is because the speed of the sound wave depends on the density of the medium: the greater the density, the faster the sound wave. This can be easily understood by thinking at how a sound wave propagates: a sound wave is a vibration of molecules, which is transmitted throughout the medium by collision of the molecules. Therefore, the smaller the spacing between the molecules (such as in solids), the more efficient is the propagation, and so the sound wave is faster. On the contrary, there is a large spacing between molecules in gases (such as in the air), so there are less collisions between the molecules and so the wave is not transmitted efficiently, and so it has less velocity.
Answer:

Explanation:
given,
Wave vibrates = 37.6
time = 27.9 s
maximum distance travel = 450 cm
time = 11.3 s
wavelength = ?
frequency of wave

f = 1.35 Hz
Speed of wave

v = 39.82 cm/s
wavelength of wave
v = fλ



Hence, wavelength of the wave is equal to 25.79 cm.
Cadences.
These cadences are the resulting tensions that chords release from their resting points. This movement is classified from a unstable chord progression to a stable one. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
<span>Brass is an <u>alloy</u>. An alloy
is a mixture of elements to form a unique material. Brass is a mixture of copper
and zinc and the percentage of each element depends on the desired material. It
has a higher malleability than bronze or zinc. Meaning that it can be bend
easily into it desired form.</span>
Answer:
How fast and efficient the energy is released.
Explanation:
Before burning the marshmallow energy is stored in it in the form of chemical bond energy or chemical potential energy. So upon burning this energy is released. So there will be a difference in energy release from a burned marshmallow and the one we eat straight from package.