The required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
First, we must understand that the component of the velocity along the vertical is due to maximum height achieved and expressed as usin
θ.
The component of the velocity along the horizontal is due to the range of the object and is expressed as ucosθ.
If the <u>air resistance is ignored</u>, the velocity of the object will be constant throughout the flight and the initial velocity will be equal to the final velocity.
Hence the required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
Learn more here; brainly.com/question/12870645
The mass of the bird is 0.32 kg.
<u>Explanation:</u>
Gravitational potential energy, the energy exhibited by an object at rest due to the influence of gravitational force. So the increase in distance of object from the surface of earth leads to increase in the gravitational potential energy. Thus,

So, as the gravitational potential energy is given as 2033 J and the position of bird placed on the tall tower is 639 m away from the bottom, then the mass (m) of the bird can be found as below.

So, finally we get the bird's mass as,
m of bird = 0.32 kg
Answer:
<u><em>on flow properties and free-flowing and cohesive. </em></u>
Explanation:
the power Free flowing powders do not cling together, as cohesive powders stick to each other and form that do not disperse well during mixing
Explanation:
We have,
Distance traveled in a circular track is 500 miles
The winning time was 3 hours and 13 minutes. It means time is 3.217 hours.
The driver's average speed is given by total distance divided by total time taken. Its formula can be written as :

At the end of the race, the driver reaches the point form where he has started. It means the displacement of the driver is equal to 0. Hence, driver's average velocity is equal to 0.