Answer:
44.3 m/s
Explanation:
a) Draw a free body diagram of the mass M. There are three forces:
Weight force mg pulling down,
Normal force N pushing perpendicular to the ramp,
and tension force T pulling parallel up the ramp.
Sum of forces in the parallel direction:
∑F = ma
T − Mg sin 30° = 0
T = Mg sin 30°
T = Mg / 2
Draw a free body diagram of the hanging mass m. There are two forces:
Weight force mg pulling down,
and tension force T pulling up.
Sum of forces in the vertical direction:
∑F = ma
T − mg = 0
T = mg
Substitute:
mg = Mg / 2
m = M / 2
M = 2m
b) Velocity of a standing wave in a string is:
v = √(T / μ)
T = mg, and m = 5 kg, so T = (5 kg) (9.8 m/s²) = 49 N. Therefore:
v = √(49 N / 0.025 kg/m)
v = 44.3 m/s
Answer:
a) v = 21.34 m/s
b) v = 21.34 m/s
c) v = 21.34 m/s
Explanation:
Mass of the snowball, m = 0.560 kg
Height of the cliff, h = 14.2 m
Initial velocity of the ball, u = 13.3 m/s
θ = 26°
The speed of the slow ball as it reaches the ground, v = ?
The initial Kinetic energy of the snow ball, 
Potential energy of the snow ball at the given height, PE = mgh
Final Kinetic energy of the ball as it reaches the ground, 
a) Using the principle of energy conservation,

b) The speed remains v = 21.34 m/s since it is not a function of the angle of launch
c)The principle of energy conservation used cancels out the mass of the object, therefore the speed is not dependent on mass
v = 21. 34 m/s
Answer:
E_particle = 1,129 10⁻²⁰ J / particle
T= 817.5 K
Explanation:
Energy is a scalar quantity so it is additive, let's look for the total energy of each gas
Gas a
E_a = 2 5000 = 10000 J
Gas b
E_b = 3 8000 = 24000 J
When the total system energy is mixed it is
E_total = E_a + E_b
E_total = 10000 + 24000 = 34000
The total mass is
M = m_a + m_b
M = 2 +3 = 5
The average energy among the entire mass is
E_averge = E_total / M
E_averago = 34000/5
E_average = 6800 J
One mole of matter has Avogadro's number of atoms 6,022 10²³ particles
Therefore, each particle has an energy of
E_particle = E_averag / 6.022 10²³ = 6800 /6.022 10²³
E_particle = 1,129 10⁻²⁰ J / particle
For find the temperature let's use equation
E = kT
T = E / k
T = 1,129 10⁻²⁰ / 1,381 10⁻²³
T = 8.175 102 K
T= 817.5 K
Answer:
x=22.57 m
Explanation:
Given that
35 m in W of S
angle = 40 degrees
25 m in east
From the diagram
The angle

From the triangle OAB


x=22.57 m
Therefore the answer of the above problem will be 22.57 m
Answer:
Explanation:
heat lost by water will be used to increase the temperature of ice
heat gained by ice
= mass x specific heat x rise in temperature
1 x 2090 x t
heat lost by water in cooling to 0° C
= mcΔt where m is mass of water , s is specific heat of water and Δt is fall in temperature .
= 1 x 2 x 4186
8372
heat lost = heat gained
1 x 2090 x t = 8372
t = 4°C
There will be a rise of 4 degree in the temperature of ice.