Force on the particle is defined as the application of the force field of one particle on another particle. the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
<h3>What is electric force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force. 
The electric force in the second case will be the same as in the first case. Therefore the force on the particle will be the same.



Hence the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
To learn more about the electric force refer to the link;
brainly.com/question/1076352
 
        
             
        
        
        
Answer:
D-Driving the car faster down the road.
 
        
             
        
        
        
Answer:
2.0 m/s/s
Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is given by:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it has both a magnitude and a direction.
For the runner in this problem, we have:
u = 0 is the initial velocity (he starts from rest)
v = 8.0 m/s is the final velocity
t = 4.0 s is the time taken
Substituting, we find

 
        
             
        
        
        
0.022 has 2 digits because you would count from the left starting with the first nonzero number
        
                    
             
        
        
        
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
