The scale would need 10 aluminum cubes on one side. Figure out how many paper clips would be needed on the other side to balance this. You have to use more than one aluminum cube because you need to have enough cubes so that you get a whole number mass. 10 cubes gives you a total mass of 27 g for the aluminum.
Answer:
reduced
Explanation:
The use of bearing surfaces that are themselves sacrificial, such as low shear materials, of which lead/copper journal bearings are an example
Answer:
vf = 3.27[m/s]
Explanation:
In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.
With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.
With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.
Then we equalize the two stress equations and we can clear the acceleration.
a = 3.58 [m/s^2]
As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.
![x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Aa%2At%5E%7B2%7D%5C%5C1.5%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%283.58%29%20%2At%5E%7B2%7D%20%5C%5Ct%20%3D%200.91%20%5Bs%5D)
And the speed can be calculated as follows:
![v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%5C%5Cv_%7Bf%7D%3D0%2B%283.58%2A0.915%29%5C%5Cv_%7Bf%7D%3D%203.27%5Bm%2Fs%5D)
The cost of boiling 500cm3 of water using the 3kW kettle is 1.35 P.
<h3>
Cost of electricity for 3 kW kettle</h3>
The cost is calculated as follows;
1 unit = 9p /kWh
Total energy consumed by 3 kW kettle, E = P x t
where;
- P is power (kW)
- t is time in (hr)
E = 3 kW x (3 mins/60 mins/hr)
E = 0.15 kWh
Energy cost = 9 p/kWh x 0.15 kWh = 1.35 P
Thus, the cost of boiling 500cm3 of water using the 3kW kettle is 1.35 P.
Learn more about energy cost here: brainly.com/question/13795167
#SPJ1
Answer:
most commonly occurs because of the frequent pumping of water from the ground.
Explanation: