1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
12

A 22.0 kg bucket of concrete is connected over a very light frictionless pulley to a 375 N box on the roof of a building as show

n in the figure. There is no appreciable friction on the box, since it is on roller bearings. The box starts from rest. How fast is the bucket moving after it has fallen 1.50 m (assuming that the box has not yet reached the edge of the roof)?

Physics
1 answer:
Veronika [31]3 years ago
7 0

Answer:

vf = 3.27[m/s]

Explanation:

In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.

With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.

With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.

Then we equalize the two stress equations and we can clear the acceleration.

a = 3.58 [m/s^2]

As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.

x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]

And the speed can be calculated as follows:

v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]

You might be interested in
Consider two conducting spheres with one having a larger radius than the other. Both spheres carry the same amount of excess cha
RSB [31]

Answer: Option (a) is the correct answer.

Explanation:

It is known that potential energy is the energy occupied by an object or substance due to its position is known as potential energy.

Therefore, more is the space occupied by an object more will be its position at a particular location. Hence, more will be its potential energy. On the other hand, smaller is the space occupied by an object, smaller will be the position holded by it.

Hence, smaller will be its potential energy.

Thus, we can conclude that for the given situation the statement, potential energy of the larger sphere is greater than that of the smaller sphere, is true.

6 0
3 years ago
What is difference between non uniform and uniform circular motion?
statuscvo [17]

Answer:

The object in a uniform motion covers same distances in an equal time period. Objects in a non-uniform motion cover dissimilar distances in an equal time period.

Explanation:

The speed of the object traveling in uniform motion is constant, the actual speed and the average speed of the moving body is same.

6 0
3 years ago
A 1.55-kg object hangs in equilibrium at the end of a rope (taken as massless) while a wind pushes the object with a 13.3-n hori
yarga [219]
<span>To answer this problem, we use balancing of forces: x and y components to determine the tension of the rope.


First, the vertical component of tension (Tsin theta) is equal to the weight of the object. 
 T * sin θ = mg =</span> 1.55 * 9.81 <span>
 T * sin θ = 15.2055

Second, the horizontal component of tension (t cos theta) is equal to the force of the wind. 
 T * cos θ =  13.3 

Tan θ = sin  </span>θ / cos θ = 15.2055/13.3 = 1.143
we can find θ that is equal to 48.82. 

T then is equal to 20.20 N
4 0
3 years ago
An object is moving east with a constant speed of 30 m/s for 5 seconds. What is the object's acceleration
pentagon [3]

Answer:

<h3>The answer is 6 m/s²</h3>

Explanation:

The acceleration of an object given it's velocity and time taken can be found by using the formula

a =  \frac{v}{t}  \\

where

v is the velocity

t is the time

We have

a =  \frac{30}{5}  \\

We have the final answer as

<h3>6 m/s²</h3>

Hope this helps you

5 0
3 years ago
Many industries are powered via distant power stations. Calculate the current flowing through a 7,300m long 10. copper power lin
Oliga [24]

Answer:

Current, I = 1000 A

Explanation:

It is given that,

Length of the copper wire, l = 7300 m

Resistance of copper line, R = 10 ohms

Magnetic field, B = 0.1 T

\mu_o=4\pi \times 10^{-7}\ T-m/A

Resistivity, \rho=1.72\times 10^{-8}\ \Omega-m

We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :

R=\rho \dfrac{l}{A}

R=\rho \dfrac{l}{\pi r^2}

r=\sqrt{\dfrac{\rho l}{R\pi}}

r=\sqrt{\dfrac{1.72\times 10^{-8}\times 7300}{10\pi}}

r = 0.00199 m

or

r=1.99\times 10^{-3}\ m=2\times 10^{-3}\ m

The magnetic field on a current carrying wire is given by :

B=\dfrac{\mu_o I}{2\pi r}

I=\dfrac{2\pi rB}{\mu_o}

I=\dfrac{2\pi \times 0.1\times 2\times 10^{-3}}{4\pi \times 10^{-7}}

I = 1000 A

So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.

4 0
3 years ago
Other questions:
  • The movement of energy from the sun toward the earth is an example of ?
    15·2 answers
  • A heavy boy and a lightweight girl are balanced on a massless seesaw. The boy moves backward, increasing his distance from the p
    6·1 answer
  • What do significant figures in a measurement include___________________________________.
    7·1 answer
  • The amplitude of a mechanical wave shows<br> What?
    15·1 answer
  • The food calorie, equal to 4186 J, is a measure of how much energy is released when food is metabolized by the body. A certain b
    6·1 answer
  • an unknown compound was determined to be 74.97% carbon, 8.39% hydrogen, and 16.64% oxygen. calculate the empirical formula
    8·2 answers
  • Two point charges +3 micro coulomb and +8 micro coulomb repel each other with a force of 40N . If a charge of -5 micro coulomb i
    13·1 answer
  • A wave with a high amplitude______?
    13·1 answer
  • g 2. In a laboratory experiment on standing waves a string 3.0 ft long is attached to the prong of an electrically driven tuning
    9·1 answer
  • 10. Suppose the tern travels 1.70*10^ km south, only to encounter bad weatherInstead of trying to fly around the stormthe tem tu
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!