Answer:
The period of motion is 0.5 second.
Explanation:
Given;
extension of the spring, x = 3.8 cm = 0.038 m
mass of the object, m = 13 g = 0.013 kg
Determine the force constant of the spring, k;
F = kx
k = F / x
k = mg / x
k = (0.013 x 9.8) / 0.038
k = 3.353 N/m
When the object is replaced with a block of mass 20 g, the period of motion is calculated as;

Therefore, the period of motion is 0.5 second.
Answer:
Fourth option
Explanation:
They're many different types of energy, from chemical and mechanical to heat and solar energy. But the two most basic types of energy are "kinetic and potential energy" or the fourth option. Kinetic energy is the energy an object has when it is in motion, while potential energy is the energy an object has when it's as rest. These two specific types of energies are the most basic and you can even convert them into many different types of energies, like heat or electrical energy.
Hope this helps.
Answer:
The acceleration of the crate is
.
Explanation:
Given that,
Force, F = 750 N
Mass of the crate, m = 250 kg
The coefficient of friction is 0.12.
We need to find the acceleration of the crate. The net force acting on the crate is given by :

f is frictional force, 

So, the acceleration of the crate is
. Hence, this is the required solution.
Directly proportional to volume, according to charles’s law
Answer:
1.98 m/s
Explanation:
To solve this, we would be using the law of conservation of energy, i.e total initial energy is equal to total final energy.
E(i) = E(f)
mgh = ½Iw² + ½mv²
Recall, v = wr, thus, w = v/r
Also, I = ½mr²
I = 0.5 * 5 * 2²
I = 10 kgm²
Remember,
mgh = ½Iw² + ½mv²
Substituting w for v/r, we have
mgh = ½I(v/r)² + ½mv²
Now, putting the values in the equation, we have
5 * 9.8 * 0.3 = ½ * 10 * (v/2)² + ½ * 5 * v²
14.7 = 1.25 v² + 2.5 v²
14.7 = 3.75 v²
v² = 14.7/3.75
v² = 3.92
v = √3.92
v = 1.98 m/s
Thus, the speed is 1.98 m/s