Factor by grouping. Group up the terms into pairs, factor each pair, then factor out the overall GCF.
x^3 + 2x^2 - 16x - 32
(x^3 + 2x^2) + (-16x-32) ... pair up terms
x^2(x + 2) + (-16x - 32) ... factor x^2 from the first group
x^2(x + 2) - 16(x + 2) ... factor -16 from the second group
(x^2 - 16)(x + 2) .... factor out (x+2)
(x - 4)(x + 4)(x + 2) .... Use the difference of squares to factor x^2-16
---------------------------
The original expression completely factors to (x - 4)(x + 4)(x + 2)
The three factors are x - 4 and x + 4 and x + 2
Answer:
<h2>
<em>X=</em><em>-</em><em>3</em></h2>
<em>Option </em><em>B </em><em>is </em><em>correct </em><em>.</em><em>.</em><em>.</em>
<em>
</em>
<em>hope </em><em>this </em><em>helps.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>
Answer:
(y - 4)(y + 4)
Step-by-step explanation:
y² - 16 ← is a difference of squares
Since y² and 16 are both squares separated by a difference , that is minus
A difference of squares factors as
y² - 16
= y² - 4²
= (y - 4)(y + 4)