1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
8

What type of motor operates at a constant steady-state speed regardless of the load?

Physics
1 answer:
LekaFEV [45]3 years ago
7 0
The type of motor that allows for constant speed regardless of load are called Geared Speed Control motors. This type of motor has a tachometer feedback device attached at the rear of the motor that gives constant feedback to the speed controller giving the advantage of constant speed regardless of load. The tachometer allows for varied frequency delivery to the motor to maintain pre-set output speed.
You might be interested in
Guillaume puts a bottle of soft drink in a refrigerator and leaves it there until its temperature has dropped 15.1 K.
Zarrin [17]

Answer: (a) The magnitude of its temperature change in degrees Celsius is 15.1^{o}C.

(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is 27.2^{o}F.

Explanation:

(a)  Expression for change in temperature is as follows.

        |\Delta T| = |x - y|K

                         = 15.1 K

                    = |(x - 273.15) - (y - 273.15)|^{o}C

                    = |x - y|^{o}C

                    = 15.1^{o}C

Therefore, the magnitude of its temperature change in degrees Celsius is 15.1^{o}C.

(b)  Change in temperature from Celsius to Fahrenheit is as follows.

           F = 1.8C + 32

          C = \frac{F - 32}{1.8}

Since,   K = C + 273

or,    \Delta K = \Delta C = \frac{\Delta F}{1.8}

         \Delta F = 1.8 \Delta K

                      = 1.8 (15.1)

                      = 27.18^{o}F

or,                  = 27.2^{o}F

Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is 27.2^{o}F.

7 0
2 years ago
Read 2 more answers
An electron moving in a direction perpendicular to a uniform magnetic field at a speed of 1.6 107 m/s undergoes an acceleration
umka2103 [35]

Answer:

B = 0.024T positive z-direction

Explanation:

In this case you consider that the direction of the motion of the electron, and the direction of the magnetic field are perpendicular.

The magnitude of the magnetic force exerted on the electron is given by the following formula:

F=qvB     (1)

q: charge of the electron = 1.6*10^-19 C

v: speed of the electron = 1.6*10^7 m/s

B: magnitude of the magnetic field = ?

By the Newton second law you also have that the magnetic force is equal to:

F=qvB=ma       (2)

m: mass of the electron = 9.1*10^-31 kg

a: acceleration of the electron = 7.0*10^16 m/s^2

You solve for B from the equation (2):

B=\frac{ma}{qv}\\\\B=\frac{(9.1*10^{-31}kg)(7.0*10^{16}m/s^2)}{(1.6*10^{-19}C)(1.6*10^7m/s)}\\\\B=0.024T

The direction of the magnetic field is found by using the right hand rule.

The electron moves upward (+^j). To obtain a magnetic forces points to the positive x-direction (+^i), the direction of the magnetic field has to be to the positive z-direction (^k). In fact, you have:

-^j X ^i = ^k

Where the minus sign of the ^j is because of the negative charge of the electron.

Then, the magnitude of the magnetic field is 0.024T and its direction is in the positive z-direction

8 0
2 years ago
The drawing shows 6 point charges arranged in a rectangle. The value of q is 2.83 uC and the distance d is 0.123 m. Find the tot
vova2212 [387]

the total electric potential at location P, which is at the center of the rectangle is 0V.

The charges placed at the corner of the rectangle are same in magnitude but different in charge. hence the total electric potential will be same in  magnitude but different in charge and will be cancelled. Similarly, all the total electric potential will be cancelled and resultant will be zero.

<h3>What is total electric potential?</h3>
  • The amount of labor required to convey a unit of electric charge from a reference point to a given place in an electric field is known as the electric potential (also known as the electric field potential, potential drop, or the electrostatic potential).
  • More specifically, it is the energy per unit charge for a test charge that is negligibly disruptive to the field under discussion. In order to prevent the test charge from gaining kinetic energy or radiating, the travel across the field is also meant to occur with very little acceleration.
  • The electric potential at the reference location is, by definition, zero units. Any point may be used as the reference point, but typically it is earth or a point at infinity.

To learn more about total electric potential with the given link

brainly.com/question/14776328

#SPJ4

3 0
2 years ago
A tennis ball is released from a height of 4.0 m above the floor. After its third bounce off the floor, it reaches a height of 1
diamong [38]

Answer:

The percentage of its mechanical energy does the ball lose with each bounce is 23 %

Explanation:

Given data,

The tennis ball is released from the height, h = 4 m

After the third bounce it reaches height, h' = 183 cm

                                                                       = 1.83 m

The total mechanical energy of the ball is equal to its maximum P.E

                                      E = mgh

                                          = 4 mg

At height h', the P.E becomes

                                      E' = mgh'

                                           = 1.83 mg

The percentage of change in energy the ball retains to its original energy,

                                 \Delta E\%=\frac{1.83mg}{4mg}\times100\%

                                  ΔE % = 45 %

The ball retains only the 45% of its original energy after 3 bounces.

Therefore, the energy retains in each bounce is

                                   ∛ (0.45) = 0.77

The ball retains only the 77% of its original energy.

The energy lost to the floor is,

                                E = 100 - 77

                                   = 23 %

Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %      

5 0
3 years ago
What are the five plants you can see from earth without a telescope?
nevsk [136]
The five planets that you can see from Earth without a telescope are Mercury, Venus, Mars, Jupiter and Saturn. 
3 0
3 years ago
Other questions:
  • Why are there temperature differences on the moon's surface even though there is no atmosphere present?
    8·1 answer
  • When a muscle is working, it _________, or tightens, thus making itself stronger.
    5·1 answer
  • A "8" grams box is pushed with a force of 100 N for 1m whereas opposing force is 10 N. A) Find the net work done on the box. B)
    13·1 answer
  • Some lakes, such as the Great Salt Lake, accumulate soluble minerals such as salt. In those lakes, people find it much easier to
    8·2 answers
  • A cannon is fired straight up into the air. If the cannon ball comes back down to the launch point in 5 seconds, what was the ma
    15·1 answer
  • Air expands isentropically from 2.2 MPa and 77°C to 0.4 MPa. Calculate the ratio of the initial to the final speed of sound.
    12·1 answer
  • Blocks A and B are identical metal blocks. Initially block A is neutral, and block B has a net charge of 7.0 nC. Using insulatin
    6·2 answers
  • Seeing how strong our gravitational pull is here on Earth, would it be possible to kill someone if you drop a penny off the Empi
    6·1 answer
  • It is easier to open the lid of a can using a spoon why?​
    14·2 answers
  • Light does not pass through some materials. What do you think happens
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!