The universal force that is effective over the longest distance between very massive objects like planets is Gravity
i believ that the answer would be
the acceleration of B is 0.2
Answer:
The resultant vector is 1 m/s
Explanation:
The resultant vector is 1 m/s west based on triangle law of vector addition, when two sides of a triangle is represented by two vectors, the resultant vector is the third side of the triangle.
There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
The force on the ship is more than a car