Answer:
The stress level at which fracture will occur for a critical internal crack length of 6.2mm is 135.78MPa
Explanation:
Given data;
Let,
critical stress required for initiating crack propagation Cc = 112MPa
plain strain fracture toughness = 27.0MPa
surface length of the crack = a
dimensionless parameter = Y.
Half length of the internal crack, a = length of surface crack/2 = 8.8/2 = 4.4mm = 4.4*10-³m
Also for 6.2mm length of surface crack;
Half length of the internal crack = length of surface crack/2 = 6.2/2 = 3.1mm = 3.1*10-³m
The dimensionless parameter
Cc = Kic/(Y*√pia*a)
Y = Kic/(Cc*√pia*a)
Y = 27/(112*√pia*4.4*10-³)
Y = 2.05
Now,
Cc = Kic/(Y*√pia*a)
Cc = 27/(2.05*√pia*3.1*10-³)
Cc = 135.78MPa
The stress level at which fracture will occur for a critical internal crack length of 6.2mm is 135.78MPa
For more understanding, I have provided an attachment to the solution.
My best guess is b but I honestly don’t know
Answer:
Bridge
Explanation:
A common, simply bridge truss is the zigzag.
Answer:
331809.5gallon/hr or 92.16gallon/s
Explanation:
What is the peak runoff discharge for a 1.3 in/hr storm event from a 9.4-acre concrete-paved parking lot (C
convert 9.4 acre to inches we have=5.896*10^7
How to calculate Peak runoff discharge
1. take the dimension of the roof
2. multiply the dimension by the n umber of inches of rainfall
3. Divide by 231 to get gallon equivalence (because 1 gallon = 231 cubic inches)
5.896*10^7*1.3
7.66*10^7 cubic inches/hr
1 gallon=231 cubic inches
7.66*10^7 cubic inches=331809.5gallon/hr or 92.16gallon/s
this is gotten by converting 1 hr to seconds
331809.5gallon/hr /3600s=92.16gallon/s