Answer:
atomic percentage = 143 %
Explanation:
Let x be the number of tin atoms and there are 4 atoms / cell in the FCC structure , then 4 -x be the number of copper atoms . Therefore, the value of x can be determined by using the density equation as shown below:

where;
the lattice parameter is given as : 4.7589 × 10⁻⁸ cm
The atomic mass of tin is 118.69 g/mol
The atomic mass of copper is 63.54 g/mol
The density is 8.772 g/cm³

569.32 = 118.69x + 254.16-63.54x
569.32 - 254.16 = 118.69x - 63.54 x
315.16 = 55.15x
x = 315.16/55.15
x = 5.72 atoms/cell
As there are four atoms per cell in FCC structure for the metal, thus, the atomic percentage of the tin is calculated as follows :
atomic % = 
atomic % = 
atomic % = 143 %
software engineers
hardware engineers
metallurgic engineers
biomechanical engineers
Given Information:
Initial temperature of aluminum block = 26.5°C
Heat flux = 4000 w/m²
Time = 2112 seconds
Time = 30 minutes = 30*60 = 1800 seconds
Required Information:
Rise in surface temperature = ?
Answer:
Rise in surface temperature = 8.6 °C after 2112 seconds
Rise in surface temperature = 8 °C after 30 minutes
Explanation:
The surface temperature of the aluminum block is given by

Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.
After t = 2112 sec:

The rise in the surface temperature is
Rise = 35.1 - 26.5 = 8.6 °C
Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.
After t = 30 mins:

The rise in the surface temperature is
Rise = 34.5 - 26.5 = 8 °C
Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.