The answers to the questions are as follows;
- It would gain three electrons
- The difference in their electronegativities.
- The elements have filled Valence levels
- potassium (K) with a 1+ charge
- ClO-
Question 1:
- How would the electron configuration of nitrogen change to make a stable configuration?
Since Nitrogen has 5 Valence electrons, it needs 3 electrons to attain it's octet configuration. As such, it gains 3 electrons.
Question 2:
- Which quantity determines how two atoms bond.
The quantity which determines how two atoms bond is The difference in their electronegativities.
Question 3:
- Which statement best explains why the elements in Group 18 do not have electronegativity values.
This is because the elements have filled Valence levels.
Question 4:
- Based on patterns in the periodic table, which ion has a stable valence electron configuration
The ion which has a stable Valence electron configuration is potassium (K) with a 1+ charge
Question 5;
- Which chemical formula represents a polyatomic ion?
The chemical formula which represents a polyatomic ion is; ClO-
Answer:
Mercury, Earth, Saturn, Jupiter, and the sun
Explanation:
this is from smallest to largest. hope it helps
The balanced chemical reaction for this would be written as:
2Mg + O2 = 2MgO
We use this reaction and the amount of the reactant given to calculate for the amount of magnesium oxide that is produced. We do as follows:
1.5 g Mg (1 mol / 24.31 g) ( 2 mol MgO / 2 mol Mg ) (40.30 g /1 mol ) = 2.49 g MgO produced
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
Let's start to understand this question by a simple combustion reaction involving oxidation of Ethane in the presence of Oxygen. When Ethane is burned in the presence of Oxygen it produces Carbon Dioxide and Water respectively. Therefore, the equation is as,
C₂H₆ + O₂ → CO₂ + H₂O
Above reaction shows the reaction and the equation is unbalanced. Balancing chemical equation is important because according to law of conservation of mass, mass can neither be created nor destroyed. Hence, we should balance the number of elements on both side.
LHS RHS
Carbon Atoms 2 1
Hydrogen Atoms 6 2
Oxygen Atoms 2 3
It means this equation is not obeying the law. Now, how to balance? One way is as follow,
C₂H₆ + O₃ → C₂O₂ + H₆O
LHS RHS
Carbon Atoms 2 2
Hydrogen Atoms 6 6
Oxygen Atoms 3 3
We have balanced the equation by changing the subscripts. But, we have messed up the chemical composition of compounds and molecules like Oxygen is converted into Ozone.
Therefore, we will change the coefficients (moles) to balance the equation as,
C₂H₆ + 7/2 O₂ → 2 CO₂ + 3 H₂O
LHS RHS
Carbon Atoms 2 2
Hydrogen Atoms 6 6
Oxygen Atoms 7 7
Now, by changing the coefficients we have balanced the equation without disturbing the chemical composition of compounds and molecules.