The standard form of the equation of a circle is (x-h)^2 + (y-k)^2 = r^2, where (h,k) is the center of the circle, (x,y) is a point of the circle, and r is the length of the radius of the circle. When the equation of a circle is written, h,k, and r are numbers, while x and y are still variables. (x-2)^2 + (y-k)^2 = 16 is an example of a circle. The problem gives us two of the three things that a circle has, a point (5,9) and the center (-2,3). We need to find the radius in order to write the equation. We substitute -2 for h, 3 for k, 5 for x, and 9 for y to get (5 - (-2))^2 + (9 - 3)^2 = r^2 We simplify: 49 + 36 = r^2, r^2 = 85. We only need to know r^2 because the equation of a circle has r^2. We now have all the information to write the equation of a circle. (x + 2)^2 + (y - 3)^2 = 85.
Answer:
Proved (See Explanation)
Step-by-step explanation:
Show that 3ⁿ⁺⁴ - 3ⁿ is divisible by 16.
This is done as follows

From laws of indices;
aᵐ⁺ⁿ = aᵐ * aⁿ.
So, 3ⁿ⁺⁴ can be written as 3ⁿ * 3⁴.
becomes

Factorize



3ⁿ * 5
5(3ⁿ)
<em>The expression can not be further simplified.</em>
<em>However, we can conclude that when 3ⁿ⁺⁴ - 3ⁿ is divisible by 16, because 5(3ⁿ) is a natural whole number as long as n is a natural whole number.</em>
Answer:
4 4/2
Step-by-step explanation:
What you do is you have to do 8-4=4 5-1=4 6-4=2 so there for the answer is 4 4/2
6*3 = 18
6*9 = 54
so 18 +54 is the correct answer
ANSWER
The product is

EXPLANATION
To find the product of

and

means we should multiply the two fractions.
We multiply to obtain,


Cancel the common factors:

Now, multiply the numerators separately and the denominators too separately.

This simplifies to,
