The distance between city a and city b is 833.345 miles.
We know that
1°=60'
The distance of city a from the initial ray is calculated as
x_a=3960*tan45.46°=4024.101 miles
The distance of city b from the initial ray is calculated as
x_b=3960*tan 38.86°=3190.75 miles
Now the distance between city a and b is equal to
4024.101-3190.75=833.345 miles
This is the vertical distance between the cities.
Since the ladder is standing, we know that the coefficient
of friction is at least something. This [gotta be at least this] friction
coefficient can be calculated. As the man begins to climb the ladder, the
friction can even be less than the free-standing friction coefficient. However,
as the man climbs the ladder, more and more friction is required. Since he
eventually slips, we know that friction is less than what's required at the top
of the ladder.
The only "answer" to this problem is putting lower
and upper bounds on the coefficient. For the lower one, find how much friction
the ladder needs to stand by itself. For the most that friction could be, find
what friction is when the man reaches the top of the ladder.
Ff = uN1
Fx = 0 = Ff + N2
Fy = 0 = N1 – 400 – 864
N1 = 1264 N
Torque balance
T = 0 = N2(12)sin(60) – 400(6)cos(60) – 864(7.8)cos(60)
N2 = 439 N
Ff = 439= u N1
U = 440 / 1264 = 0.3481
initial speed of the racer is given as


after applied force the final speed is given as


now during this speed change the racer will cover total distance 185 m
so here we will use kinematics



now the force that chute will exert on the racer will be given as



B) here following is the strategy for solving it
1. first we used kinematics to find the acceleration of the car
2. then we used Newton's II law (F = ma) to find the force
Answer:
F = 2500N
Explanation:
F = ma
You're given m=25kg and a=100m/s²
Plug it in
F = (25)(100)
F = 2500N