write out what you have on both sides, then just use basic multiplication to try and even out both sides. I can help if you need me to balance some for you!!
The formula we can use in this case is:
d = v0t + 0.5 at^2
v = at + v0
where,
d = distance travelled
v0 = initial velocity = 0 since at rest
t = time travelled
a = acceleration
v = final velocity when it took off
a. d = 0 + 0.5 * 3 * 30^2
d = 1350 m
b. v = 3 * 30 + 0
<span>v = 90 m/s</span>
Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.
Explanation:
Period P has units of seconds (s).
Length has units of meters (m).
Mass has units of kilograms (kg).
Acceleration has units of meters per second squared (m/s²).
Dimensional analysis:
s = √(m / (m/s²))
Therefore:
P = k √(L/g)
where k is a dimensionless constant.
The "generational change" approach to managing innovation assumes that innovation is a predictable process made up of a series of steps and that compressing the time ittakes to complete those steps can speed up innovation.