First, subtract px2 from both sides.
Now you have:
x3 - px2 = (1 - p) x1
Next, divide both sides by (1 - p)
So now you have
x3 - px2/(1 - p) = x1
...as your final answer
*You can decide if you want to leave the parenthesis in your final answer, I left them there so it could be visible where I put them. :)
The is the answer on my paper:
Answer:
D.
90 x 1/2 = 45 km
The rate is 90 miles per hour and 30/60=1/2 so we multiply 1/2
Hope this helps
Step-by-step explanation:
Answer:
y = 4/5
Step-by-step explanation:
Since, y varies inversely as x.
![\therefore \: y = \frac{k}{x} \\ (k = constant \: of \: proportionality) \\ \therefore \: xy = k...(1) \\ plug \: y = \frac{2}{5} \: and \: x = 2 \: in \: (1) \\ 2\times \frac{2}{5} = k \\ \implies \: k = \frac{4}{5} \\ substituting \: k= \frac{4}{5} \: in \: (1) \\ xy = \frac{4}{5} ..(2) \\ this \: i s \: the \: equation \: of \: variation \\ plug \: x = 1 \: in \: (2) \\ 1 \times y = \frac{4}{5} \\ \huge \red{ \boxed{y = \frac{4}{5} }}](https://tex.z-dn.net/?f=%20%5Ctherefore%20%5C%3A%20y%20%20%3D%20%20%5Cfrac%7Bk%7D%7Bx%7D%20%20%5C%5C%20%28k%20%3D%20constant%20%5C%3A%20of%20%5C%3A%20proportionality%29%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20xy%20%3D%20k...%281%29%20%5C%5C%20plug%20%5C%3A%20y%20%3D%20%20%5Cfrac%7B2%7D%7B5%7D%20%20%5C%3A%20and%20%5C%3A%20x%20%3D%202%20%5C%3A%20in%20%5C%3A%20%281%29%20%5C%5C%20%202%5Ctimes%20%5Cfrac%7B2%7D%7B5%7D%20%20%20%3D%20k%20%5C%5C%20%20%5Cimplies%20%5C%3A%20k%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5C%5C%20substituting%20%5C%3A%20k%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5C%3A%20in%20%5C%3A%20%281%29%20%5C%5C%20xy%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20..%282%29%20%5C%5C%20this%20%5C%3A%20i%20s%20%5C%3A%20the%20%5C%3A%20equation%20%5C%3A%20of%20%5C%3A%20variation%20%5C%5C%20plug%20%5C%3A%20x%20%3D%201%20%5C%3A%20in%20%5C%3A%20%282%29%20%5C%5C%201%20%5Ctimes%20y%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5C%5C%20%20%5Chuge%20%5Cred%7B%20%5Cboxed%7By%20%3D%20%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%7D%7D)
Answer:
0.03
Step-by-step explanation:
divide 3 by 10^3 to obtain the answer.