the answer your looking for is Optical instrument.
Protons and neutrons are located in the nucleus, a dense central core in the middle of the atom, while the electrons are located outside the nucleus.
Answer:
The answer is "The object's speed relative to S can be greater than or less than its speed relative to S', depending on the actual values."
Explanation:
The S' frame and the object are moving in a positive direction. The object is moving with respect to the S frame so the S frame the rest frame
take the velocity of the object with respect to the rest frame as v and the velocity of the S' frame with respect S frame as v2
relative velocity of the object to the S' frame would be
Vrel = v2- v
This means the Vrel of the object with respect to the S' frame is less than the Vrel of the object with respect to the S frame
However is the S' velocity is greater than that of the object then the Vrel of the object with respect to the S' frame is greater than the Vrel of the object with respect to the S frame.
This would mean the second option is the answer, the relative speed of the object depends on the actual values.
Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C