Answer:
KE = 1/2 * m * 
Explanation:
use the formula:
KE = 1/2 * m * 
KE = kinetic energy in joules (J)
m = mass in kg
v = velocity in m/s
You get a more low sound.
Conversely, when the wavelength becomes shorter you get a more treble sound.
;-)
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
The less valence electrons the more reactive the element is.
Answer: current I = 1.875A
Explanation:
If the resistors are connected in series,
Then the equivalent resistance will be
R = 6 + 18 + 15 + 9
R = 48 ohms
Using ohms law
V = IR
Make current I the subject of formula
I = V/R
I = 90/48
I = 1.875A
And if the resistors are connected in parallel, the equivalent resistance will be
1/R = 1/6 + 1/18 + 1/15 + 1/9
1/R = 0.166 + 0.055 + 0.066 + 0.111
R = 1/0.3999
R = 2.5 ohms
Using ohms law
V = IR
I = 90/2.5
Current I = 35.99A