Answer:
C. Count the atoms in each substance in the reactants and products.
Explanation:
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
In order for a chemical equation to be balanced, the condition which must be met is that the number of atoms in the reactants equals the number of atoms in the products.
This ultimately implies that, the mass and charge of the chemical equation are both balanced properly.
In Chemistry, all chemical equation must follow or be in accordance with the Law of Conservation of Mass, which states that mass can neither be created nor destroyed by either a physical transformation or a chemical reaction but transformed from one form to another in an isolated (closed) system.
One of the step used for balancing chemical equations is to count the atoms in each substance in the reactants and products.
For example;
NH3 + O2 -----> NO + H2O
The number of atoms in each chemical element are;
For the reactant side:
Nitrogen, N = 1
Hydrogen, H = 3
Oxygen, O = 2
For the product side;
Nitrogen, N = 1
Hydrogen, H = 2
Oxygen, O = 2
When we balance the chemical equation, we would have;
NH3 + 3O2 -----> 4NO + 2H2O
Ohm's law states that the voltage within an electrical circuit is equal to the product of the current and the voltage. Mathematically it is written as V=IR where V is the voltage, I is the current and R is the resistance. If a circuit has a voltage of 9.0 Volts and a resistance of 36.0 Ohms, the current is I = V / R = 9.0/36.0 = 0.25 Amps.
Density is the best property to use, as while multiple different metals could create cubes with the same color, mass, or volume, no different metal could create a cube with the same mass and volume. Density is based on mass and volume, and as a result no two different metals will have the same density.