Yes, because beryllium is less dense and harder than oxygen.
Answer:
28%
Explanation:
Basically, all o did was write the equations, balance it and solve for them. Also, at the place I stared, I used simultaneous equation to solve it. Multiplying by 8 and also 3.
It's a pretty straightforward question.
At the final step that's missing, I Did
(y)C3H8 = 2.8 / ( 2.8 + 7.1)
(y)C3H8 = 0.28
One property is it's volume. I am not sure if the second
Answer:
c is your answer there u go
Explanation:
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol