The balanced reaction is as follows;
BiCl₂ + Na₂SO₄ --> 2NaCl + BiSO₄
this is a double displacement reaction
the oxidation number of Bi is +2 in both BiCl₂ and BiSO₄
oxidation number of Cl is -1 in both BiCl₂ and NaCl
oxidation number of Na is +1 in both Na₂SO₄ and NaCl
oxidation numbers of elements in SO₄²⁻ remains the same in both compounds.Therefore the oxidation state in any of the elements in the reaction doesn't change. Neither of the elements show an increase or decrease in the oxidation numbers .
Answer for this question is no element decreases its oxidation number.
Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
Answer with Explanation:
"Mass" and "weight" should never be used interchangeably with each other. Mass refers to the <u>total amount of matter</u><u> that can be measured in an object, </u>while weight refers to the<u> measure of the</u><u> force of gravity</u><u> that is acting on the object's mass.</u>
The mass of an object is<u> constant</u> (meaning, it doesn't change even if the object will be placed on another location) while the weight of an object relies on the <em>force of gravity.</em> So, this means that your mass on Earth and on the moon are identical, however, your weight on Earth and on the Moon are different. You will weigh lesser on the Moon because it has a lesser surface gravity than that of Earth.
So, this explains the answer.
1m = 100cm
so 10m = 100*10 = 1000cm or in scientific notation 1.00x10^3 cm
1g = 1/1000kg
1mL = 1/1000L
so 1g/mL = (1/1000)/(1/1000)kg/L
=1kg/L
37.5g/mL = 37.5kg/L or 3.75*10^1 kg/L
17.8 mL NaOH
<em>Step 1.</em> Write the chemical equation
Fe^(2+) + 2NaOH → Fe(OH)2 + 2Na^(+)
<em>Step 2.</em> Calculate the moles of Fe^(2+)
Moles of Fe^(2+) = 500 mL Fe^(2+) × [0.0230 mmol Fe^(2+)]/[1 mL Fe^(2+)]
= 11.50 mmol Fe^(2+)
<em>Step 3.</em> Calculate the moles of NaOH
Moles of NaOH = 11.50 mmol Fe^(2+) × [2 mmol NaOH]/[1 mmol Fe^(2+)]
= 23.00 mmol NaOH
<em>Step 4.</em> Calculate the volume of NaOH
Volume of NaOH = 23.00 mmol NaOH × (1 mL NaOH/1.29 mmol NaOH)
= 17.8 mL NaOH